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Silhouette Based Approaches — Prior Work

| | Moving Shape
Structural oint st N
symmetry, relational statistics

Unwrapped silhouette, silhouette
similarity, key frame analysis

Eigenspace Sequences
Hidden Markov Model
Gait Style and Content

Average Silhouette, moments, higher
order correlation, video oscillations
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inematic Features, Ellipsoidal Fits

Modeled ~ ~
Shape + Motion

@ Model Based Methods Model Free Analysis
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(5ait Data Bases

* HumanlID data base (USF/NIST) (1870 sequences from 122
subjects)

— For each subject, two views, two surface types and two types of shoes.
Some carried brief cases; some were imaged after 6 months.

UMD (Two data sets: 25 subjects and 55 subjects)
* Unversity of Southampton (Soton) (116 subjects)
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USF Dataset
Experiment Probe Difference
A G,A,L View
B G,B,R Shoe
C G,B,L Shoe, View
D C,AR Surface
E C,B,R Surface,Shoe
F C,AL Surface,View
G C,B,L Surface,Shoe,Vie
W
H G,A,R,BF Briefcase
I G,B,R,.BF Shoe,Briefcase
J G,AL,.BF View, Briefcase
K G,AR,t2 Time
L C,AR t2 Surface, Time
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UMD Infrastructure

Camera 4

Camera b

Multi—Cast

Video
Server

Camera 3

Camera 8

Clients

Clients

Camera 2

- Camera, 4.5 m heigh, usex
i Camera, 6 m heigh, used

M Roof top camera

4 Cameras, 4.5m
1 Camera, 6m
1 Camera, roof

1 Video server
N clients



UNIVERSITY OF MARYLAND

&

SIEMENS CORPORATE RESEARCH

UMD Dataset Acquisition

SIEMENS
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UMD Integrated Software System

SIEMENS
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Preprocessing

background subtraction

—

Binarized silhouette

* Independence from Clothing, Illumination
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UMD Background Subtraction Results

Segment 1

A Segment 3
o 3

Segment 2

I

(b)

LOED

Stances along segment 1 Stances along segment 2
Stances along segment 3 Stances along segment 4
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Appearance Matching Approach

Motivation
— Similarity with text-based speaker identification

— Availability of limited training data

Feature : Width of outer contour of silhouette

SIEMENS
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Width Feature

Person 1 Person 2

e

0}

160/

0
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Temporal Plots of Width

Person 1 Person 2

5 0 15 20 & 30 » 40 § 10 15 20 F 30

Person 4

3%
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l Eigen decomposition
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Width Vectors Overlays after Smoothing

Before smoothing After smoothing

Other features

® Direct Smoothed Width Vectors
= Dynamics

SIEMENS
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Matching Gait Sequences

* Template Matching Using DTW
— Dynamic programming
— Non-linear time normalization for matching
— Constraints
* Monotonicity X, , <X, ,Y,, <Y,
* Local continuity X,-X, =7, Y, Y, <2
* Global path
* End point X;=Y%

16
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ping (DTW) Algorithm

* Local distance computation L(&,/)=| | Y ,-X/| |

e Cumulative distance computation
DX, Y,) = L(X,Y,) +
min DX, ,Y ), DX, ,Y 1), DX, Y, 5)}

* Backtracking

Frames I . cky _— i
of 4 /
Reference

letl'crn 3 i
A o

c(2)

SIEMENS

CK)

a 1 = 3 +

Frames of the res pamern E——
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Results on the USF database

90

80
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I o (2]
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Identification rate (%)
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Bl Bascline
] DTW using Width Feature
Bl DTW using Binary Silhouette | |
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Statistical Framework for Gait-based Human Identification

*  Components of gait : Structure and dynamics

. Features
—  Width of the outer contour of the silhouette (UMD, CMU,USF)
—  Entire binary silhouette (USF)

20
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Exemplars: Structure

Distinct Stances occur during a walk cycle

behowl011jpg behow1d13.pg bshowlil1Sjpg bshowl018jpg  E=how 1025 pg bshow1041.pg  bshow 1044 g behowl04E8. pg bshowl(50.pg  bshow 1085 g

Divide gait cycles into N segments

Pool features from the j™ segment

M
Pick ej such that Dj :;jergll“rll}d(xi,ej) 1s minimized

Optimum Exemplar set {e S eN}

Choice of N

21
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Dynamics

e Difficulties with the simple classification criterion

Quantize

D, Dj Dy

e Use dynamics of transition across exemplars

A=[p(e (t)| p(e, ()]

SIEMENS
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Hidden Markov Model (HMM)

* Problem: Dimensionality vs Training data available

e Solution : Indirect Approach:
e FED vectors fj (t)=d(xj(t),e| ) where t=1,...)T, 1=1,....5
— Encodes structure ( D, < D}J ) and dynamics of individual

— FED vector sequence as the observed process corresponding to the Markov

matrix: HMM 1= (A, B, H)

— Generality of FED vector for different Representations

23
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Training

|

Frame to Exemplar Distance
(FED)

Vector Sequences

§

Ay
Hidden Markov Model
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Evaluations

Video of unknown

person “U”
d(x* (t)7e|1)‘

Database of
Exemplars

=

d(x"(t).€)

d(x"(t).€

[

f2(t)

£ (t)

HMM #N

P_N

HMM #2

v

P_2

P_1

HMM #1

Rank
order
Pr’s
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Direct Approach

— Usual Approach for HMMs : Mixture of Gaussians for
modeling B.

— Redefine B in terms of Exemplars

b, (x(t))=P(x(t)|e,) = ﬂe—aD(x(t),en)

26
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Training

* We start with a predefined value for A4, a uniform distribution

Updating Transition Matrix, A
A" =arg, maxP(O | (A", B, 7)) (Baum —Welch Algorithm)

A

<zc for 7z, and the initial estimate of the exemplars.

] . .. . . .

> * The Expectation-Maximization algorithm is used to refine the
~ .

= estimates of the exemplars and 4.

. * The model parameters usually converge in a few iterations.
O

>~ .

= Updating Exemplars

— (i+1) _ (i+1) _ -

z E{Y =arg, maxl_lte{jthgmup}P(Ot |E) = E{"™ =arg, min Zte{jthgmup}D(ot, E)
&

>

Z

=

&
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Testing
* A sequence X can be identified by finding the HMM parameters

(Ap) trom the gallery that maximizes the probability of the
observation sequence given Ap.

* We use the Viterbi algorithm to compute the probability of a
sequence given the model.

ID=arg, maxP(X | 4,),
whereA, is the HMMfor p™ person.

28
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Results on the USF Database

Identification rate (%)
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1 Indirect HMM approach
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Results on the USF Database
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Statistical Feature Fusion

AlRItIEIR(RIARE

A
7z Figure 2. Sample silhouette images in a gait cycle and the corresponding GEI (the right most image).
i *Gait Energy Image ( GEI ) is used as a feature to tackle silhouette errors.
: *Use real Silhouettes with a distortion model to generate synthetic templates; Synthetic Templates
«  account for gait in varying conditions.
* PCA and MDA features are fused to obtain recognition results.
=
® *J. Han and B. Bhanu, “Statistical feature fusion for gait-based human recognition,” Proc. IEEE
> Conference on Computer Vision and Pattern Recognition, pp. 842-847, 2004.
= Feal Gallery
=l A
| Gallery Gait Real Gallery Ten‘.platei_ Component and Features o Similarity
S .".?flll](‘rl.leﬂe. Synthetic Galllerg_ D'Zj:'{'l']“:;:"l »| Measurement
Sequences v Templates Gt .} ; Real Probe
- Frequency IStEIi Transfopmation Features
— and Phase e Makrix Fusion —¥»
Z —_— Estimation £ Synthetic Recognition
—  Probe Gait Synthptic Probe o Gallery Feature_g| L T Result
Silhouette Templates Fl!:eatufle SPT_LE ” ME'"“'Iﬂ“t}’ t
: e ransformation easuremen
ol Real Probe Templates | Synthetic

Probe Features
@ Figure 1. System diagram of human recognition using proposed statistical feature fusion approach.
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Gait Dynamics Normalization

* The dynamics of
the observed probe
sequences are
normalized using the

pHMM model.

* Population Hidden
Markov  Model

used as a Generic
Model for walking.

1S

* Viterbi
for Recognition.

Decoding
/. Tiu and S.
Sarkar, IEEE

TPAMI, vol. 28, June
2000.

Stance Inference using Population HMM

g
3
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Gallery Stance-Frames

ARRRRnan
MANNANRNRNA

Morphological
Erosion/Dilation

Project

Change
Morphological
FParameter

5

Probe Stance-Frames

WIARAANRNIN
MANRIRRAA

Sz

Lincar Discriminant Subspace

Project

Emphasizing Inter-subject differences
for each stance

Similarity based on Euclidean Distance

|

Maximum Similarity

|

Similarity Score
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Some New Results from USF

SIEMENS

100
50 M Baseline
OUMD
80 OUCR
o 70 B New
<
= 60
2
3 50
s 40
Q
2 30
20
10
0
A B C D E F G H I J K L
Experiments (Gallery = 122 subjects)

From IEEE TPAMI, June 20006, Liu and Sarkar
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Summary of the Top Rank Recognition for Experiments

100 OuUMD
90
— — OCMU
2
- OMIT
270
(1]
E 60 W CAS
_g 50 M Baseline
§40 B New
-
§ 30
=20
10
0
A (view) B (shoe) D (surf) H (carry) K (time)
Experiments (Gallery = 71 subjects)

From IEEE TPAMI, June 20006, Liu and Sarkar
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View Invariant Gait Recognition

* Limitations of present gait recognition algorithms
— Require exact side-view of the walking person
— Solution : 3D models (Hard!)
— Alternative: Visual hull
* Needs at least 4 cameras

* Computation of the order of O(kmn)

* Idea: Person walking far from the camera can be approximated
as a planar object

36
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Overview of Our Method

Camera

Gait <

Recognition

Done entirely in video domain, no explicit 3D computation

37
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Imaging Geometry

Y PROJECTLON
PLANE ]
.- (X1.YLZL} B
v c
af—_#_f_;___#_
=l
o
= Z1 =
21>t
Translational velocity [Vy , 0,v,]

38



UNIVERSITY OF MARYLAND

SIEMENS CORPORATE RESEARCH SIEMENS

Framework for Novel View Synthesis

e Tracking

— Assume initial position of a fixed point on the object (Xref r Y ref )

Tracks of (x,y) positions of the head for different @

170
180forr—

180}

P~
=

y—position———:

130

120f

110 1 1 1 1 1
0 100 200 300 400 500 600 700

¥—position—-x»

Slope of the lines = Tan ( &)

&
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Framework for Novel View Synthesis

Robust Estimation of &
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Framework for Novel View Synthesis

* HEstimation of ¢ (for constant velocity models)
X, — f cot(@
cot(e) = 2 ©)
yref
* Synthesis
. X, CoS( @)+ X, (1—cos( 8))
o —sin( O)(x, + X, )+ f
Yo = 1 Yo

—sin( @)( X, + X, )+ T
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Svnthesis Examples

15 degrees 30 degrees 45 degrees
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Gait Recognition Results

® Feature : Binarized silhouette

= (Classifier : DTW with binary correlation as local distance

9 =15 6 =30 6 =45

7
Ve

///

i}\ 80 i}\ 80 T 80 .

| | ' /

o g g /
g 60 g 60 0'83 60F
= = =

2 2 %]

© i L
= = =
g 40 g 40 ] 40
= = ®

g With Leg and height Fusion g With Leg and height Fusion g With Leg and height Fusion
a 20 - Withleg only _ a 20 - Withleg only _ 3 20 - - With leg only
- With complete synthesized images - Wilh complete synthesized images - With complete synthesized images
Unnormalized Images Unnormalized Images Unnormalized Images
0 . . ‘ . 0 . . ‘ . ‘ , . ‘
2 4 6 ] 10 12 2 4 6 ] 10 12 00— P 5 E 15 15

Rank ——= Rank ——= Rank ——>
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NIST Database & Walking Pattern

Gait Gallery

U Camera
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Gait Recognition (INIST Database)

Cumulative Match Score ——»

100

80}

60

40}

20!

Performance using synthesized images
Performance using unnormalized Images

5]

10 15 20 25
Rank ——

30
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Application: Multimodal Biometrics

>

Gait Recognition
Algorithm

Face Recognition
Algorithm

SIEMENS

Identification
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Fusion of Face and Gait

FACE NIST Database GAIT

Similarity Matrix for Face Similarity Matrix for Gait

UNIVERSITY OF MARYLAND

CMC Plot for Face Recognition 100
100—— . :
b
aof
JI\ 80
T a0} |
@
I 70
® 8
2 gol o 60
o 5
& 50} =
E =
& 40t g 40
= o]
g 30 =
© a0 g
3 201
10p d Performance using synthesized images
5 ) ) ) Performance using unnormalized Images
10 156 20 25 30 0 ; : ; : !
Rank ——> 5 10 15 20 25 30

Rank ——:

&
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Fusion of Face and Gait

Histogram of True Matches and False Matches

120

100

0.0285 Qo3 0035 0.04 0.045 0.056 0.065 Q.06 0.065

49



UNIVERSITY OF MARYLAND

&

SIEMENS CORPORATE RESEARCH SIEMENS

Fusion of Face and Gait

CMC Plot for Fusion of Face and Gait (Hierarchical)

A. Hierarchical Fusion: Gait -> Face i

B0f

>

- top matches above a threshold

50F
40}

- 1/5 th time for face recognition.

30

Cumulative Match Score

20

5 10 15 20 25 30
Rank ——=

CMC Plot for Fusion of Face and Gait (using Product Rule)
100 T T T T T

a0F

a0r

B. Product rule on similarity scores .

>

- 100 % recognition. 6o}
40}

30

Cumulative Match Score

20

5 10 15 20 25 30
Rank ——=
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Shape or Dynamics (or Is It Both?)

* Human perception
* Most gait recognition algorithms are shape based !
* Relative importance of shape and dynamics

* Definition of shape

— “Shape is all the geometric information that remains when location, scale
and rotational effects are filtered out from the object”.

— Kendall’s Statistical Shape Theory used for the characterization of shape.

— Pre—shape accounts for location and scale invariance alone.

51



UNIVERSITY OF MARYLAND

&

SIEMENS CORPORATE RESEARCH SIEMENS

Pre-Shape

* klandmark points (complex vector)
 Translational invariance: Subtract mean

e Scale invariance : Normalize the scale

Z, - X , where C =1 - i1k1kT
| ex| X
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Feature Extraction

Silhoutte

4

Landmarks

!

Centered LLandmarks

Pre-shape vector
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Distance Between Shapes

* Shape lies on a spherical manifold.

* Shape distance must incorporate the non-Euclidean nature of the
shape space.

* D)Full Procrustes distance.

2)Partial Procrustes distance.

3)Procrustes distance.
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Full Procrustes Distance

e Procrustes Fit

d(Y,X) = |B - ase” - (a+]jb)L] .

e Full Procrustes distance=Minimum Procrustes fit.

de (Y,X) = inf d(Y,X).
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Other Shape Distances

* Partial procrustes distance

dp(X.,Y) = _inf |B - aT|.

'eSO(m)

* Procrustes distance (p): distance on the Great circle.
d-(X,Y) = sin p,

d.(X,Y) = 2 sin(%).
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Tangent Space

* Linearization of spherical shape space around a particular pole.
* The Procrustes mean shape 1s usually chosen as the pole.

* [f the shapes in the data are very close to each other then
Fuclidean distance in tangent space approximates shape
distances.

UNIVERSITY OF MARYLAND

&
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Three Shape Based Methods for Recognition

e Stance Correlation.

* Dynamic time warping in shape space.

* Hidden Markov Model in shape space.
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Stance Correlation

Exemplars for 6 stances for
each individual.

The correlation between
exemplars is used as the
matching criterion.

Performance comparable to
Baseline.

A

1!
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Dynamic Time Warping in Shape Space .

* Enforce end-point constraint.

* Obtain best warping path.

e Cumulative error is computed using the shape distances

described.

e Performance is better than baseline.
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Hidden Markov Model in Shape Space

* Exemplars are regarded as states.
* HMM built for each person in the gallery.

* Identity established by maximizing the probability that the
observation came from the model in the gallery.

* Performance is better than baseline and comparable to D'TW.

61



UNIVERSITY OF MARYLAND

&

SIEMENS CORPORATE RESEARCH SIEMENS

Comparison of Various Methods on the USEF Database

Avarage Parcentage of Identification(Probes A-G)

.

g

B

=]
=
T

L

s

=

Comparizan of averapelof Probes A-3) CMS curve for varous algoeithms

5
o
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Comparison of Various Methods on the USF Database

Compareon between the AR, ARMA, Bepeline, Etance Cormlation, DT, HWIM

H AR
‘ B Linsar Dynmmical Syatamd ARMA)

-

[ Enssline

1 Stance Camalation
B DTwWAHAMM (Bhapa)
Hl HMM (Image basad)

Parcentage of kiantticalon

B 8§ & 3 8 3 8 8

=
a
T

a A B e D E F a

Probos

 Shape is more important for recognition than dynamics. Shape
also provides for speed change invariance.

* Dynamics can help to improve performance of shape based
methods.
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Applications and Future Work

UNIVERSITY OF MARYLAND

&

Short-time Verification problems.

Using “generalized” gait eigen vectors for subspace based
activity recognition.

Extensions of the view invariant approach using 2 cameras.

3D parameterized models for gait vs. 2D approaches.
Applications in video indexing and retrieval.

Using 3-D models of objects for synthesis of non-planar object.

— Novel view synthesis and recognition of face images..
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Applications and Future Work

* Is gait effectiver

— Maybe for a small data set (< 100 persons) viewed from
fronto-parallel direction.

— Can be fooled by changing the shoe type, intentional
disguises etc.

— Starbucks 8:00 a.m. gait versus going home gait!

* (Gait analysis 1s useful for detecting abnormal walking patterns
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